A topic review on probing primordial black hole dark matter with scalar induced gravitational waves
نویسندگان
چکیده
Primordial black holes (PBHs) might form from the collapse of over-densed regions generated by large scalar curvature perturbations in radiation dominated era. Despite decades various independent observations, nature dark matter (DM) remains highly puzzling. Recently, PBH DM have aroused interest since they provide an attracting explanation to merger events binary discovered LIGO/VIRGO and may play important role on DM. During formation PBH, gravitational waves will be sourced linear at second-order, known as induced (SIGWs), which provides a new way hunt for This topic review mainly focuses physics about SIGWs accompanying recently, not only because can represent our Universe but also explain hole mergers Sasaki et al., 2016M. Sasaki, T. Suyama, Tanaka, S. Yokoyama, Phys. Rev. Lett. 117, 061101 (2016), [erratum: 121,no.5,059901 (2018)], arXiv:1603.08338 [astro-ph.CO] .Google Scholar; Chen Huang, 2018Chen Z.-C. Huang Q.-G. Merger rate distribution primordial binaries.Astrophys. J. 2018; 864: 61arXiv:1801.10327 [astro-ph.CO]Crossref Scopus (44) Google Raidal 2019Raidal M. Spethmann C. Vaskonen V. Veermäe H. Cosmol. Astropart. 2019; 1902: 018arXiv:1812.01930 (70) De Luca 2020aDe Franciolini G. Pani P. Riotto A. confront LIGO/Virgo data: current situation.J. 2020; 06: 044arXiv:2005.05641 (27) Hall 2020Hall Gow A.D. Byrnes C.T. D. 102: 123524arXiv:2008.13704 (10) Bhagwat 2021Bhagwat 2021; 01: 037arXiv:2008.12320 (1) Hütsi 2020Hütsi arXiv:2012.02786 [astro-ph.CO]Date: 2020Google Scholar LIGO Abbott 2016Abbott B.P. R. T.D. Abernathy M.R. Acernese F. Ackley K. Adams Addesso Adhikari R.X. al.LIGO scientific, virgo).Phys. 2016; 116: 061102arXiv:1602.03837 [gr-qc]Crossref PubMed (0) if ∼10−3 is PBHs. So far, there no evidence Although observations constrained fraction PBHs Tisserand 2007Tisserand Le Guillou L. Afonso Albert J.N. Andersen Ansari Aubourg E. Bareyre Beaulieu J.P. Charlot X. al.EROS-2).Astron. Astrophys. 2007; 469: 387arXiv:astro-ph/0607207 [astro-ph]Crossref (504) Carr 2010Carr B.J. Kohri Sendouda Y. Yokoyama 2010; D81: 104019arXiv:0912.5297 [astro-ph.CO]Google Barnacka 2012Barnacka Glicenstein J.F. Moderski 2012; D86: 043001arXiv:1204.2056 Griest 2013Griest Cieplak A.M. Lehner M.J. 2013; 111: 181302Crossref (91) Graham 2015Graham P.W. Rajendran Varela 2015; 92: 063007arXiv:1505.04444 [hep-ph]Crossref (125) Brandt, 2016Brandt Constraints macho compact stellar systems ultra-faint dwarf galaxies.Astrophys. 824: L31arXiv:1605.03665 [astro-ph.GA]Crossref (182) 2016Chen Wang Constraint abundance Planck data.J. 1612: 044arXiv:1608.02174 (43) 2018Wang Y.-F. Li T.G.F. 120: 191102arXiv:1610.08725 (71) Gaggero 2017Gaggero Bertone Calore Connors R.M.T. Lovell Markoff Storm 2017; 118: 241101arXiv:1612.00457 [astro-ph.HE]Crossref (84) Ali-Haimoud Kamionkowski, 2017Ali-Haimoud Kamionkowski D95: 043534arXiv:1612.05644 Aloni 2017Aloni Blum Flauger 1705: 017arXiv:1612.06811 (46) Horowitz, 2016Horowitz B. arXiv:1612.07264 2016Google Niikura 2019aNiikura Takada Yasuda N. Lupton R.H. Sumi More Kurita Sugiyama Oguri Chiba Nat. Astron. 3: 524arXiv:1701.02151 (141) Zumalacarregui Seljak, 2018Zumalacarregui Seljak U. 121: 141101arXiv:1712.02240 (90) Nakama 2018Nakama Suyama Hiroshima 97: 023539arXiv:1712.08820 (9) 2018Abbott Adya V.B. 231103arXiv:1808.04771 (34) Magee 2018Magee Deutsch A.-S. McClincy Hanna Horst Meacher Messick Shandera Wade D98: 103024arXiv:1808.04772 [astro-ph.IM]Google 2019aChen 871: 97arXiv:1809.10360 (19) 2019bNiikura Masaki 99: 083503arXiv:1901.07120 (66) 2019Chen arXiv:1904.02396 2019Google 2019Abbott braham S.A. Affeldt Scientific, Virgo.arXiv:1904.08976 2019aWang Liao arXiv:1910.07397 Scholar, fpbh, still exist open window mass range [10−16,10−14]∪[10−13,10−12]M⊙, where are possible present all Universe. old conception it date back 1974 when Hawking proposed that due early universe Hawking, 1974Carr S.W. Mon. Not. Roy. Soc. 1974; 168: 399Crossref Carr, 1975Carr The spectrum.Astrophys. 1975; 201: 1Crossref Scholar. threshold process. Once exceed critical value, would generate region immediately undergo single comoving size such order horizon size. exact calculation function, β, describes contained within time debating complicated question today. Among constraints DM, (SIGWs) quite stringent constraint several orders magnitude better than other 2019bChen Yuan arXiv:1910.12239 certain dominant (RD) epoch, alter quadrupolar moment thus emit GWs second-order Tomita, 1967Tomita Non-linear theory Instability expanding universe.Prog. Theor. 1967; 37: 831Crossref Matarrese 1993Matarrese Pantano O. Saez General-relativistic approach nonlinear evolution collisionless matter.Phys. 1993; D47: 1311Crossref (83) 1994Matarrese General relativistic dynamics irrotational dust: cosmological implications.Phys. 1994; 72: 320arXiv:astro-ph/9310036 (128) 1998Matarrese Mollerach Bruni 1998; D58: 043504arXiv:astro-ph/9707278 [astro-ph]Google Noh Hwang, 2004Noh Hwang J.-c. 2004; D69: 104011Google Carbone Matarrese, 2005Carbone 2005; 71: 043508arXiv:astro-ph/0407611 (50) Nakamura, 2007Nakamura Prog. 117: 17arXiv:gr-qc/0605108 (86) Therefore, were inevitably during PBHs, providing powerful tool Moreover, small scales much larger those CMB scales; enhanced first-order tensor inflationary modes Saito 2009R. 102, 161101 (2009), [Erratum: 107, 069901(2011)], arXiv:0812.4339 [astro-ph] See more relevant studies Ananda 2007Ananda K.N. Clarkson Wands D75: 123518arXiv:gr-qc/0612013 [gr-qc]Google Baumann 2007Baumann Steinhardt P.J. Takahashi Ichiki 76: 084019arXiv:hep-th/0703290 [hep-th]Crossref (210) Arroja 2009Arroja Assadullahi Koyama 2009; 80: 123526arXiv:0907.3618 (15) Wands, 2010Assadullahi 81: 023527arXiv:0907.4073 (38) Bugaev Klimai, 2010aBugaev E.V. Klimai P.A. Bound wave background holes.JETP 91: 1arXiv:0911.0611 (8) 2010bBugaev 023517arXiv:0908.0664 (59) 2010R. 123, 867 (2010), 126,351 (2011)], arXiv:0912.5317 2011Bugaev 2011; 83: 083521arXiv:1012.4697 (64) Alabidi 2013Alabidi 05: 033arXiv:1303.4519 2016Nakama 94: 043507arXiv:1605.04482 (20) 2017Nakama Silk 95: 043511arXiv:1612.06264 (81) Inomata 2017aInomata Kawasaki Mukaida Tada Yanagida T.T. 123510arXiv:1611.06130 (95) Orlofsky 2017Orlofsky Pierce Wells J.D. 063518arXiv:1612.05279 (45) Garcia-Bellido 2017Garcia-Bellido Peloso Unal 09: 013arXiv:1707.02441 (93) 2018Sasaki Tanaka Class. Quant. Grav. 35: 063001arXiv:1801.05235 (241) Espinosa 2018Espinosa J.R. Racco 1809: 012arXiv:1804.07732 (61) Terada, 2018aKohri Terada D97: 123532arXiv:1804.08577 Cai 2019aCai R.-g. Pi 122: 201101arXiv:1810.11000 (99) Bartolo 2019aBartolo Lewis 211301arXiv:1810.12218 (63) 2019bBartolo D99: 103521arXiv:1810.12224 Unal, 2019Unal 041301arXiv:1811.09151 (42) 2019Byrnes Cole P.S. Patil S.P. Steepest growth power spectrum holes.J. 028arXiv:1811.11158 Nakama, 2019Inomata 043511arXiv:1812.00674 (60) Clesse 2018Clesse García-Bellido Orani arXiv:1812.11011 2018Google 2019bCai R.-G. S.-J. Yang X.-Y. 1905: 013arXiv:1901.10152 (24) 2019aInomata arXiv:1904.12878 2019bInomata D100: 043532arXiv:1904.12879 2019cCai arXiv:1907.06372 2019aYuan 081301arXiv:1906.11549 2019dCai arXiv:1909.13728 Lu 2019Lu Gong Yi Z. Zhang 12: 031arXiv:1907.11896 2019bYuan arXiv:1910.09099 Tomikawa Kobayashi, 2019Tomikawa Kobayashi arXiv:1910.01880 [gr-qc]Date: 2019aDe Kehagias arXiv:1911.09689 2019cYuan arXiv:1912.00885 2020aInomata Conf. Ser. 1468: 012002Crossref 2020bInomata 012001Crossref 2020cInomata 101: 123533arXiv:2003.10455 (16) 2020Yuan arXiv:2007.10686 Papanikolaou 2020Papanikolaou Vennin Langlois arXiv:2010.11573 2020aZhang Ali Lin arXiv:2008.12961 Kapadia 2020aKapadia S.J. Pandey K.L. Kandhasamy Ajith arXiv:2009.05514 2020bZhang arXiv:2012.06960 Domènech 2020aDomènech arXiv:2012.08151 Dalianis Kouvaris, 2020Dalianis I. Kouvaris arXiv:2012.09255 Atal Domènech, 2021Atal arXiv:2103.01056 2021Google first calculated evaluate energy density monochromatic They found could detected pulsar timing arrays (PTAs) space-based GW detectors. After detection GWs, intriguing emerged this field recent years hundreds concerning so far. Since lot reviews literature, e.g. some given 2020Carr arXiv:2002.12778 Green Kavanagh, 2020Green Kavanagh arXiv:2007.10722 Kuhnel, Kuhnel matter: developments.Annu. Nucl. Part. Sci. 70: 355arXiv:2006.02838 we focus paper. paper organized follows. In section Formation give brief introduction reviewed Scalar then discuss how use probe Searching using SIGWs. Finally, summary outlook Summary outlook. section, introduce take calculating function β. inside Hubble volume. exists one-to-one correspondence between frequency f∗, namely Scholar.mpbh∗≈2.3×1018M⊙(3.91g∗form)1/6(H0f∗)2,(Equation 1) g∗form corresponding degrees freedom H0 constant transferred another useful form, namelympbh∗≈2×105M⊙(t1s).(Equation 2) fpbh≡ΩPBH/ΩDM estimated Scholar.fpbh≃2.5×108β(g∗form10.75)−14(mpbhM⊙)−12.(Equation 3) On slices, relation perturbation, ζ(k), contrast, Δ(k), linear-order byΔ(k)=2(1+w)5+3w(kaH)2ζ(k),(Equation 4) w equation state H parameter. perturbation ζ related metric byζ≡ψ−H(v+B),(Equation 5) notations ψ, v, B introduced Equation (3) below. Bardeen potential (see (23) below) byζ=Ψ−23(1+w)(H−1Ψ'+Φ)(Equation 6) For adiabatic perturbations, stays superhorizon scales. Then Φ=−3(1+w)/(5+3w)ζ assuming absence anisotropies Φ=−2/3ζ RD. contrast smoothed over scale, R, asΔ(x,R)=∫d3x′W(|x−x′|,R)Δ(x′),Δ(k,R)=W(k,R)Δ(k),(Equation 7) with W chosen smooth contrast. variance Δ(k,R) by⟨Δ2⟩=∫0∞dkkW2(k,R)4(1+w)2(5+3w)2(kR)4Pζ(k),(Equation 8) define dimensionless ⟨ζ(k)ζ(k′)⟩≡2π2k3δ(k+k′)Pζ(k). Usually, amplitude assumed obey Gaussian distribution. satisfies criterion, generated. regarded statistics peaks three-dimensional random field, peak 1986Bardeen J.M. Bond Kaiser Szalay A.S. fields.Astrophys. 1986; 304: 15Crossref very amplitudes O(0.01−0.1) constitute most As result, “bump” smaller Ivanov 1994Ivanov Naselsky Novikov Inflation 50: 7173Crossref (173) 1996Garcia-Bellido Linde 1996; 54: 6040arXiv:astro-ph/9605094 (391) Ivanov, 1998Ivanov Nonlinear production holes.Phys. 57: 7145arXiv:astro-ph/9708224 1997Yokoyama 1997; 318: 673arXiv:astro-ph/9509027 2006Kawasaki Takayama Yamaguchi 2006; 74: 043525arXiv:hep-ph/0605271 Hertzberg Yamada, 2018Hertzberg M.P. Yamada 083509arXiv:1712.09750 2018Inomata 043514arXiv:1711.06129 (67) 2017bInomata 96: 043504arXiv:1701.02544 2018bKohri inflation running spectral indices: matter- and/or radiation-dominated universe.Class. 235017arXiv:1802.06785 benchmark example, assume “spicky” particular k∗, calculate case, almost monochromatic. Otherwise, broad spectrum, one has taken into account so-called “cloud-in-cloud” problem swallowed bigger PBH. different blur calculation. spicky theory, number approximated e.g., (4.14) Scholar)npk(νc)≃(⟨k2⟩/3)3/2(2π)2(νc2−1)e−νc2/2,(Equation 9) defined νc≡Δc/⟨Δ2⟩. ⟨k2⟩ as⟨k2⟩=1Δ2∫0∞dkkk2W2(k,R)Pζ(k)(Equation 10) β npk β=npk(νc)(2π)3/2R3. Another commonly used method Press-Schechter formalism, evaluated simply integrating probability (PDF) beyond valueβ=∫νc+∞dν2πe−ν2/2=12erfc(νc2).(Equation 11) formalism considers neglecting higher derivatives. comparison Young 2014Young Calculating 2014; 2014: 045arXiv:1405.7023 (97) result showed close agreement differing factor 10 νc. depends many aspects, problems We aspects next. takes place tail PDF perturbations. Hence any non-Gaussianities significantly change impacts been discussed long ago Bullock Primack, 1997Bullock J.S. Primack Non-Gaussian fluctuations inflation.Phys. 55: 7423arXiv:astro-ph/9611106 Pina Avelino, 2005Pina Avelino 124004arXiv:astro-ph/0510052Crossref Hidalgo, 2007Hidalgo J.C. arXiv:0708.3875 [astro-ph]Date: 2007Google Bugaev, 2012Klimai 17th International Seminar High Energy Physics. 2. INR, 2012: 163-174arXiv:1210.3262 Besides considering model, non-Gaussian model local-type non-Gaussianities, expanded part (up cubic order)ζ=f(ζg)=ζg+FNL(ζg2−⟨ζg2⟩)+GNLζg3.(Equation 12) Here ζg whose Gaussian. parameter FNL skew GNL kurtosis PDF. above convenient estimating presence non-Gaussianities. Let PNG PG part, ζg. obtained changing variables, ζg=f−1(ζ), thatβ=∫ζc∞PNG(ζ)dζ=∫fi−1(ζ)>ζc∑i=1ndfi−1(ζ)dζPG[fi−1(ζ)]dζ.(Equation 13) equivalent integrate region, fi−1(ζ)>ζc. Here, lower index i indicates i-th solution total n real solutions. 2012Byrnes Copeland E.J. 86: 043512arXiv:1206.4188 (79) al. up order. that, was studied fifth-order Byrnes, 2013Young 08: 052arXiv:1307.4995 (69) their results sensitive parameters (FNL, GNL, etc.). Except variables (13), 2018Franciolini 03: 016arXiv:1801.09415 adopted method, path-integral formulation, regions. authors expressed sum N-point correlation function. Readers interested formulation refer work references therein. However, impractical Riccardi argued affect cumulants 2021Riccardi Taoso Urbano arXiv:2102.04084 get impractical. semi-analytical expression estimate see standard procedure based (4). just perturbation. slicing, non-linear long-wavelength approximation Harada 2015Harada Yoo C.-M. Koga 084057arXiv:1503.03934 (55) 2018Yoo Garriga PTEP. : 123E01arXiv:1805.03946 Musco, 2019Musco 100: 123524arXiv:1809.02127 Scholar.Δ(r,t)=−4(1+w)5+3w(1aH)2e−5ζ(r)/2∇2eζ(r)/2.(Equation 14) Owing relation, longer even unavoidably make these “intrinsic non-Gaussianities” effects K
منابع مشابه
The black hole symphony: probing new physics using gravitational waves.
The next decade will very likely see the birth of a new field of astronomy as we become able to directly detect gravitational waves (GWs) for the first time. The existence of GWs is one of the key predictions of Einstein's theory of general relativity, but they have eluded direct detection for the last century. This will change thanks to a new generation of laser interferometers that are alread...
متن کاملAdvances in Black Hole Gravitational Physics and Cold Dark Matter Modelling. The Gravity of Dark Matter
One of the most important issues of current physics relates to the presence of cosmological cold dark matter (CDM). In this paper CDM at the Galactic centre is modelled using a previously reformulated type of dynamic Newtonian advanced gravity (DNAg). This DNAg gives results which are technically exactly the same as the general theory of relativity (GTR), in the low and medium mass densities. H...
متن کاملProbing polarization states of primordial gravitational waves with CMB anisotropies
We discuss the polarization signature of primordial gravitational waves imprinted in cosmic microwave background (CMB) anisotropies. The high-energy physics motivated by superstring theory or M-theory generically yields parity violating terms, which may produce a circularly polarized gravitational wave background (GWB) during inflation. In contrast to the standard prediction of inflation with u...
متن کاملSinglet scalar dark matter in noncommutative space
In this paper, we examine the singlet scalar dark matter annihilation to becoming the Standard Model particles in the non-commutative space. In the recent decades, many candidates of dark matter have been offered, but our information about the nature of dark matter is still limited. There are such particle candidates as scalar matetr, fermion, boson, gauge boson, etc.; however, they have nei...
متن کاملGravitational waves from sub-lunar-mass primordial black-hole binaries: a new probe of extradimensions.
In many brane world models, gravity is largely modified at the electroweak scale approximately 1 TeV. In such models, primordial black holes (PBHs) with a lunar mass M approximately 10(-7)M([circle dot]) might have been produced when the temperature of the Universe was at approximately 1 TeV. If a significant fraction of the dark halo of our galaxy consists of these lunar mass PBHs, a huge numb...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: iScience
سال: 2021
ISSN: ['2589-0042']
DOI: https://doi.org/10.1016/j.isci.2021.102860